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ABSTRACT

A sinusoidal surface profile is used to study by an exact method
the effect of water waves on an electromagnetic field propagating downwards
from the surface. It is assumed that the magn'etic field is directed parallel

to the surface corrugations. The results are presented graphically.

Comparisons are made between these results and those obtained

using an approximate method of Wait.

Accepted for the Air Force
Franklin C. Hudson
Chief, Lincoln Laboratory Office




Water-Wave Effects on Radio Wave Propagation in the Ocean

I. METHOD OF SOLUTION

The problem under consideration is the evaluation of the electro-
magnetic field components under the ocean when the field sufficiently far
above the ocean is essentially uniform and horizontal. In a Cartesian
coordinate system with its z axis pointing vertically, the ocean surface

is assumed to be given by the equation
z +acosux = 0. (1)

where # = 2m/L and L is the water wavelength. The magnetic field H

far above the surface is assumed to lie in the y-direction, and so the
symmetry of the problem forces it to remain so everywhere. Since, in
addition, neither the far field nor the surface shape is a function of y, then

no field quantity will depend on y.

Now the electromagnetic wavelengths of practical interest are very
long compared with the water wavelength. Therefore the quasi-static
assumption that displacement currents are negligible can safely be made.
Then in the (non-conducting) air, H satisfies the equation Vx H = 0,
V.H = 0. But since H = ?Hy(x,z), then the only possible solution in the

air is that Hy is a constant everywhere.

In the ocean, H satisfies the quasi-static equation (V2 + kz)ﬁ = 0,

where k'2 = iwouo. (Time dependence is assumed to be as exp {-i*l't}, o}
is the ocean conductivity and Mo is the permeability of free space). Thus
since the solution must also be periodic in x, the general solution, if it

converges, for Hy is




= S_‘ -1
Hy(x,z) nL=Iobnexp( 1knz)cos n#x. (2)

(The symmetry of the problem about the plane x = 0 excludes the

possibility of additional terms in sinnxx). Here kn is defined as

———

k= A2 - n2x® = ifela? 2 (3)

and the negative sign in the exponent in (2) ensures that each mode decays

exponentially as z goes negative.

The corresponding expression for the electric field E (x, z) is given

by E = (Vx}i)/o = (-ﬁaHy/az +z BHy/ax)/O, or

I8

E = bn{x1kncosnkx - zZnH s1nnkx}exp(—1knz) (4)

n

(o]

Solving the problem involves finding the values of the unknown b
coefficients in (2) and (4) by means of the boundary condition that Hy is
continuous at the surface. Thus, assuming the uniform field above the
surface is normalized to unity, one can formally write, using (1) and (2},

®

Z b exp{ikna costx}jcosnnx = 1. (5)
n=o

By truncating the series on the left to N terms and enforcing the
equality at N points in the range 0< x <L, one can obtain N equations in

the first N unknown bn coefficients. These equations can then be solved

by the usual methods. Unfortunately, to obtain (5), one must make the

Rayleigh assumption, which is that the downward-going wave expansion (2)




is valid not only for z<-a but also in the strip -a<z<a. It can be shown
[1,2] that if the normalized wave height a/L is greater than 0. 713 then
(2) is invalid there and (5) diverges. Thus the bn found by truncating the
series in (5) to N terms will not in general converge to their correct values

as N is increased.

However, by interpreting (5) in @ more general sense, one can still
use it as a basis for finding the bn even though the series diverges [3,4].
That is, one regards the left side of (5) as a generalized function which
can be equated to the actual field on the surface only indirectly via a complete
set of sufficiently smooth test functions. In this sense the downward going
wave expansion will remain valid on the surface for a much larger range of

a than in the conventional point-by-point sense.

Thus although (5) may be incorrect as it stands, the result of multi-

plying each side by (#/2m)cos mx x and integrating with respect to x over

the range 0 to 27/ is the equation

YA b =0 (6)
mn n mo
n=o
where 6 =1 if m = 0 and is zero otherwise, and A is
mo mn
” 2m/n
Amn == i exp(1kna. cosHx) cosnix cosmux dx
.n+m .n-m
=iy (ke + iy (ka)) /2. (7)

Here the chosen test functions are the set (X/2m) cos m x, (n/2m) sinm # x,

of which only the former are necessary for representing the even function

of x whichis H , and the series in (6) converges over a much larger range




of a than does the series in (5). In (7), J (k_a) is the Bessel function
n+tm' n

of the first kind {5] of order n+m and argument kna.

The evaluation of the brl is now carried out in a straightforward way

by truncating the series and solving the resulting finite set of equations.

To obtain the actual field quantities in the ocean from the bn is a
simple matter in the region z< -a where the downward going wave expan-
sion is known to converge. One simply substitutes the numerical values of
the bn into (2) for H_ and into (4) for E. However, in the region -a<z<a,
the series in (2) and (4) will not in general converge, and so cannot be used

directly.

A general method which is applicable for evaluating the field quantities
anywhere beneath the surface is to take that function of x which is the field
quantity along the line z = zd(x) = -acosfx - d and expand it in the test
function set. In this case, for Hy for example, an even function of x, the

expansion is

=) c_(d) cosnnx. (8)

H (x,z
y n=o

q

But the generalized function for this same Hy(x, zd) is given by (2) with =z
replaced by zd(x). Thus the cn(d) can be evaluated by multiplying the

right sides of both (2) and (8) by (#/27)cosm#x and integrating from 0
to 2m/n. The result is

c (d) = e_ > A__ exp(ik_d)b_, (9)
ms=o

where ¢ =1 if n = 0 and is 2 otherwise, and both the b and the A
n m nm

[defined by (7)] are already known.




Thus by using (8) and (9) one evaluates Hy on contours which are the

same shape as the surface contour but at an arbitrary depth d below it.

(When d = 0 the contour lies at the surface, on which Hy = 1. Thus from
(8), the cn(O) are given by cn(O) = 6no and so (9) reduces to (6), the

equation determining the bn. )

Similarly, by expressing E on the shifted surface-shaped contour as

o} [ o]
E =x E an(d)cosnxx - ZE sn(d)sinnxx
n=o n=1

one finds

[+
a_(d) = ¢ ; A__exp(ik_d)ik b /o

and

s_(d)

@©
2,;- B__ exp(ik_d) mxb_/o

| nm

where A is defined by (7) and
nm

_ ¢:h-m .n+m
B = [i I k2)-i Jn+m(kna)]/2.

It should be noted that although the method described above can be
expected to converge numerically to the exact values for the coefficients

bm, it will not in general be the case that |bm | goes to zero as m grows

indefinitely, for the series in (2) does not in general converge when z = 0.
Since (2) does converge for z <-a, however, one should find that the modi-

fied coefficients b__ exp(i kma) do go to zero in absolute value as m grows
m

indefinitely.




II. RESULTS

Approximations of the bm coefficients were obtained by inverting

the following truncated version of (6)

N
YA b =6 (m=0,1,...,N) (10)
n=

for various values of N and of the problem parameters 6/L and a/L.
(v = 2r/L and k = (1+i)/8, where & =J2/J)ouo is the skin depth in the
water.) As a check on the accuracy of the inversion, the bn values found

from it were substituted back in the left side of (10) and the result compared

with émo. As a check on the complete approximation, the sum

S = )b_explik a)

was computed using the approximate bm and compared with the correct

value, given by (2) with z = -a and x = 0, of unity. All computations were

performed on the IBM 360 computer using single precision.

It was found that the method converged, as N increased, to give stable

values for the bm when a/L was about 0.3 or less. The rapidity of the

convergence was greatest for the smaller values of a/L. The effect of
6/L on the convergence was less marked, but was in the direction that
convergence was less rapid for the smaller 6/L values. A typical result
is that with 8/L =1, a/L = 0.15 and N = 9, the value of S-1 was found
to be, in absolute value, less than 10_3.

When values of a/L larger than 0.3 were used, the convergence was

slow and the b did not settle to stable values. However, the inversion
m

check showed that this behavior was always accompanied by poor inversion
accuracy. This indicates that the set of equations (10) becomes poorly
conditioned when a/L exceeds 0. 3, and then single precision is insufficient

to solve them accurately.




Some specific results for the underwater field components are given
in Figs. 1 and 2. In Fig. 1, the horizontal field components Hy and Ex
in the plane z = -a are plotted as a function of x in magnitude and phase
over a half-period (0<x<L/2) for various values of 6/L. The wave height
parameter a/L is constant at 0. 15 (giving a maximum wave slope of about
1) for all curves, and the field quantities are normalized with respect to

the fields that would exist at depth a beneath a plane surface.

The points plotted in Fig. 1 are the result of using Wait's [6] approx-
imation to calculate the same field quantities. This method assumes that
for sufficiently shallow and long water waves, the field propagates down to
the level z = -a essentially as a plane wave. Thus it would be expected to
give good results for small §/L and small a/L. The extent to which the
approximation deteriorates when a/L is 0. 15 is indicated by the closeness
of the points to the continuous lines. (In Wait's approximation, the nor-
malized quantities H_ and Ex are identical, so that only one curve of
points exists for amplitude and one for phase.)

At a sufficiently great depth, only the first terms in the downward-
going wave expansions (2) and (4) remain significant. Under this condition,
the ratio of the actual field to the field that would exist at the same depth
beneath a plane surface is simply bo/l for both H and EX, since bo =1
when a/L = 0. It was found that |bo| is always greater than or equal to
unity, and so the amplitude departure can be represented unambiguously
by the quantity |bo -1 | The phase departure is just the phase of bo. These
quantities are plotted in Fig. 2 as a function of a/L for various values of

5/L.
Since bO also equals the ratio of the average horizontal field to the

field at the same depth below a plane surface, Fig. 2 also shows the way
the average horizontal field components depend on a/L and 6/L for any

z<a.




III.

CONCLUSIONS

The mathematical technique described here (a generalized-

function interpretation of the Rayleigh assumption) appears to be accurate

and to converge rapidly for values of a/L for which the conventional

interpretation of the Rayleigh assumption is known to be invalid. Using

this technique, one can evaluate the electromagnetic field at any point

beneath the surface for all water wave heights and lengths of practical

interest.
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Fig. 2. The amplitude and phase departures of the horizontal field at
'"great' depth (or of the average horizontal field at any depth z < -a)
from those of the field at the same depth below a plane surface.
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